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Resonant scattering of electrons with low energies �as compared to the bandwidth� on a single neutral
short-range impurity in graphene is analyzed theoretically, taking into account the valley degeneracy. Reso-
nances dramatically increase the scattering cross section and introduce a strong energy dependence. Analysis of
the tight-binding model shows that resonant scattering is typical for generic impurities as long as they are
sufficiently strong �the potential is of the order of the electron bandwidth or higher�.
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I. INTRODUCTION

Electron transport in graphene is a subject of intense
study, both theoretical and experimental, since the very dis-
covery of this material in 2004.1 In general, electron trans-
port is determined by competition of different scattering
mechanisms, both inelastic �e.g., electron-phonon� and elas-
tic �static defects�. Elastic scattering is dominant at suffi-
ciently low temperatures.

Different kinds of crystal imperfections can cause elastic
electron scattering in graphene: mesoscopic corrugations of
the graphene sheet �ripples�2 producing perturbations smooth
on the atomic scale, charged impurities producing long-range
Coulomb fields, dislocations producing long-range strain
fields, or short-range neutral impurities. While the first three
types seem to be more important for the transport in the
clean graphene, it is probably the fourth one that can be
controlled. In Refs. 3 and 4 graphene oxide was chemically
reduced to normal graphene. In Ref. 5 hydrogen and hydroxil
groups were deposited on the graphene sheet in a controlled
and reversible manner. In all cases resistance changed by
several orders of magnitude. Assuming that attachment of a
chemical group to a carbon atom in graphene changes the
hybridization of its electronic orbitals from sp2 to sp3, one
can view such group as a neutral short-range impurity.

Short-range impurities in carbon nanotubes have been
studied even before the single-layer graphene was obtained
in the laboratory.6–10 Short-range impurities have been
shown to modify local electronic properties of graphene,
such as the local density of states11–17 or local magnetic
moment,13,18 and to induce Friedel oscillations in doped
samples.19 The present work is dedicated to the problem of
electron scattering on a single short-range impurity whose
size R is assumed to be of the order of the interatomic dis-
tance a �the C-C bond length�, and the electron energy � is
assumed to be much smaller than the energy scale set by the
potential v /R �where v is the electron velocity at the Dirac
point so that v /R is of the order of the electronic bandwidth�.
The main focus is the case of a strong impurity so that the
results for electron scattering obtained in the first Born
approximation20–25 are not expected to be applicable. In-
stead, we are going to exploit the smallness ���R /v�1. For
particles with parabolic spectrum such low-energy scattering
is characterized by a single constant of the dimensionality of
length �the scattering length� determined from the solution of

the Schrödinger equation at zero energy. In graphene, due to
the degeneracy of the spectrum at the Dirac point, more than
one length is needed to characterize a scatterer.26

The common intuition is that for a strong enough scatterer
the typical value of scattering lengths l�R, yielding the
cross-section �� pl2�a �here p= ��� /v is the electron mo-
mentum counted from the Dirac point�. The exception to this
is the case of resonant scattering when the potential has a
bound �quasibound� state with small energy, then one of the
scattering lengths becomes of the order of the size of this
state. The main motivation for the present study is that for
the Dirac spectrum the exception becomes a rule: a vacancy
�which can be viewed as the limit of an infinitely strong
scatterer� introduces a bound state exactly at the Dirac
point,11 so one of the scattering lengths diverges. As a con-
sequence, the scattering cross section diverges as the electron
energy approaches the Dirac point. This divergence corre-
sponds to that found in the scattering off vacancies13,27 and
in the unitary limit of potential impurities.28

It is hard to introduce a real vacancy in graphene; how-
ever, if the � orbital of some carbon atom is very tightly
bound, this atom acts effectively as a vacancy for the rest of
the � electrons in the crystal. In particular, impurities intro-
duced electrochemically3–5 are likely to act as strong scatter-
ers and thus are unlikely to be described by the first Born
approximation. This expectation is supported by density-
functional theory �DFT� calculations for graphane29 �a hypo-
thetical material obtained from graphene by attaching a hy-
drogen atom to each carbon�; the binding energy was
obtained to be about 7 eV per hydrogen atom. For such scat-
terers the scattering length should be large thus motivating
the present study.

The main framework of this study is the general scattering
theory30 modified for the two-dimensional �2D� Dirac
equation,31–33 taking into account the valley degeneracy. In
Sec. III we show that for a general short-range scatterer all
the information necessary to determine the cross section up
to corrections of the order �pR�2 is encoded in a 4�4 matrix
L and a constant r0 �all having the dimensionality of length�.
The terms of the order �pR�2 and higher cannot be studied
using the Dirac equation, as the Dirac Hamiltonian itself is
the leading term in the expansion of a microscopic Hamil-
tonian in the parameter pa �and R�a is always assumed
here�. The matrix L �i� can be obtained from the solution of
the microscopic Schrödinger equation �e.g., an ab initio cal-
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culation� for electrons in the graphene crystal at zero energy
and with an appropriate asymptotics, �ii� is Hermitian and
invariant with respect to the time reversal so it depends on
ten real parameters, and �iii� its four eigenvalues l1 , . . . , l4
play the role of the scattering lengths. Divergence of one or
several of these eigenvalues signals the existence of a local-
ized solution at zero energy. For the parameter r0 we have �i�
r0�R, �ii� the dependence of the scattering amplitude on r0
is weak �logarithmic�, and �iii� the exact value of r0 cannot
be extracted from the zero-energy solutions only; wave func-
tions at low but finite energies have to be considered in order
to determine it. When L and r0 are known, the low-energy
scattering T matrix is given by Eq. �19�, which covers both
Born �T��� is � independent and the cross-section ���� and
the unitary �T����1 / �� ln �� and ��1 / �� ln2 ��� limits, as
well as the crossover between them for an impurity of a large
but finite strength.

In Sec. IV we consider two examples of impurities with
special symmetries, and we see how these symmetries mani-
fest themselves in the scattering �i.e., how they restrict the
form of the matrix L�. The first example �the sitelike impu-
rity� is an impurity localized around one of the carbon atoms
and preserving its C3v symmetry �C3v consists of threefold
rotations and reflections in three planes perpendicular to the
crystal plane�; it is natural to assume that this would be the
case for a hydrogen atom bound to a carbon. The second
kind �the bondlike impurity� involves two neighboring car-
bon atoms and the bond between them and has the symmetry
C2v. This could be the case for an oxygen atom bound to two
carbon atoms. The two kinds of impurities described above
are schematically shown in Fig. 1. Of course, a generic im-
purity is not going to have any symmetry at all.

Since graphene crystal is symmetric, impurities of the
same kind can occur in different locations and with different
orientations having equal probability if these can be related
to each other by a crystal symmetry operation. For example,

the sitelike impurity, located on an A atom in Fig. 1, can
reside on a B atom with the same probability; the bondlike
impurity can have one of the three different orientations,
rotated by 2� /3 with respect to each other. Although equiva-
lent from the crystal symmetry point of view, such impurities
will have different L matrices. If one is not looking at effects
of coherent scattering off several impurities, the cross section
can be averaged over such equally probable impurity con-
figurations. This procedure is described in Sec. V.

In Sec. VI we perform explicit calculations in the tight-
binding model as an example of microscopic model �i.e.,
well defined at short distances�, using the standard T-matrix
approach on a lattice, adopted by many authors.12–17 We con-
sider the two kinds of impurities mentioned above, modeled
as a diagonal on-site potential for a sitelike impurity, and a
combination of a diagonal and an off-diagonal potentials for
a bondlike impurity �the same model was adopted in Ref.
15�. The scattering lengths are calculated as functions of the
impurity strengths, and r0 is obtained to be 0.5a. In agree-
ment with the results of Ref. 15, the divergence of the scat-
tering length occurs at infinite impurity strength for a sitelike
impurity �corresponding to a zero-energy state bound to a
vacancy� and at finite values of the diagonal and off-diagonal
strengths for a bondlike impurity. The resulting cross sec-
tions as functions of the electron energy for different impu-
rity strengths are shown in Figs. 2 and 3.

II. FREE ELECTRONS IN GRAPHENE

Graphene unit cell contains two atoms, labeled A and B
�Fig. 1�. Each of them has one � orbital so that there are two
electronic states for each point of the first Brillouin zone �the
electron spin is not considered in the present work�. The
electronic energy � �measured from the Fermi level of the
undoped graphene� vanishes at the two Dirac points K ,K�
with wave vectors �K. Thus, there are exactly four elec-
tronic states with �=0. An arbitrary linear combination of
them is represented by a four-component column vector �.
Here we choose the following arrangement of the wave-
function components in the column:26

a1a2

A A A

B BB

A A A

B B B

A A A

B B B

B B B

AA

σ

A

σa

a

(i)
(ii)

FIG. 1. �Color online� The honeycomb lattice with two atoms
�A and B� per unit cell and the elementary translation vectors a1 and
a2. The two inequivalent reflection planes �a and �a� are shown. �i�
and �ii� are schematic representations of sitelike and bondlike im-
purities with symmetries C3v and C2v, respectively.
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FIG. 2. The outscattering cross section �coinciding with the
transport cross section� for a one-site impurity of the strength U0

=1, 5, and 10 eV �dotted, dashed, and solid curve, respectively� as
a function of the electron energy �in electron volt� as given by Eq.
�42�. The curve for U0=1 eV is multiplied by a factor of 10. The
parameters of the model are v=108 cm /s=6.58 Å and a=1.42 Å.
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� = �
�AK

�BK

�BK�

− �AK�

� . �1�

Other definitions of the column vector are possible, but they
are inconvenient for the present problem; for the discussion
see Appendix and Ref. 34. Being interested in low-energy
states, we focus on states in the vicinities of the Dirac points.
The wave vectors of these states can be written as k= �K
+p, where pa�1 �here a	1.42 Å is the C-C bond length�.
Equivalently, states near the Dirac points are obtained by
including a smooth position dependence ��r�, where r

�x ,y�.

The basis in the space of 4�4 Hermitian matrices is
formed by 16 generators of the SU�4� group. They can be
represented as products of two mutually commuting algebras
of Pauli matrices denoted by 	x ,	y ,	z and 
x ,
y ,
z,

23,26

which fixes their algebraic relations. We denote the unit 4
�4 matrix by 1 and sometimes by 	0 or 
0 to make the
formulas compact. In representation �1� 	i are the Pauli ma-
trices acting within upper and lower two blocks �the sublat-
tice subspace�, while 
i are the Pauli matrices acting in the
“external” subspace of the two blocks �the valley subspace�.
For four column vectors, which can be represented as a di-
rect product,

�
x1y1

x2y1

x1y2

x2y2

� 
 �x1

x2
� � �y1

y2
� 
 �x1

x2
� � �y1�K + y2�K�� , �2�

the 	 matrices act on the x variables, while the 
 matrices
act on the y variables. The basis in the valley subspace is
denoted by �K ,�K� for future convenience.

The matrices 	i ,
 j, i , j=x ,y ,z, and their products have
definite transformation properties under the crystal group.
The irreducible representations of C6v group are listed in
Table I �Cn denotes the rotation by 2� /n, �a,b,c are the three
reflections that swap the K and K� points, �a,b,c are the three
reflections that swap A and B atoms, and the fixed point of
these operations is the center of the hexagon, see Fig. 1�. The
correspondence between them and the matrices is given in
Table II.35,36

The unitary matrices corresponding to the symmetry op-
erations of the crystal can also be written in terms of 	 and

 matrices, independent of the representation used.34 Spe-
cifically, UC3

=e�2�i/3�	z is the matrix of the C3 rotation, UC2
=	z
x of the C2 rotation, U�a�

=	x
z of the �a� reflection, and
U�a

=	y
y of the �a reflection. The two elementary transla-
tions by the vectors a1 and a2 act on the wave function as
ta1,2

:��r��e��2�i/3�
z��r−a1,2�. The time-reversal operation
is defined as ��Ut�

�, where the unitary time-reversal ma-
trix assumes the convenient form Ut=	y
y in representation
�1�.

Taking the leading-order term in the expansion of the
band Hamiltonian in the powers pa�1, we describe the
electrons by the Dirac Hamiltonian,
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FIG. 3. The outscattering cross section for a two-site impurity
with U0=5 eV and U1=0 �dashed curve�, and U0=0 and U1

=5 eV �solid curve� as a function of the electron energy �in elec-
tron volt� as obtained from Eq. �47�. The parameters of the model
are v=108 cm /s=6.58 Å and a=1.42 Å.

TABLE I. Irreducible representations of group C6v and their
characters.

C6v E C2 2C3 2C6 �a,b,c �a,b,c

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B2 1 −1 1 −1 1 −1

B1 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

TABLE II. Classification of 4�4 Hermitian matrices by irreducible representations of the C6v group.
Matrices joined by braces transform through each other under translations.

Irrep. A1 B1 A2 B2 E1 E2

Valley diagonal matrices

Matrix 1 �z �z �z�z �x, �y −�y�z ,�x�z

Valley off diagonal matrices

Matrix �z�x �z�y �x �y �y�x, −�x�x �x�y, �y�y
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H0 = − iv� · � , �3�

where �= �	x ,	y� is a two-dimensional vector and v
	108 cm /s is the electron velocity. The eigenstates of the
Dirac Hamiltonian with a definite value of momentum are
plane waves,

�ps

�0� �r� = eipr��ps


�0� , �4a�

��s

�0� =

1

2
�se−i�/2

ei�/2 � � �
 = W�
† 1

2
�1 + s

1 − s
� � �
, �4b�

with the energy �ps
=svp. The index s= �1 distinguishes
between the conduction and the valence band. The unitary
matrices W�p

=ei	y�/4ei	z�p/2, where �p=arctan�py / px� is the
polar angle of the vector p, diagonalize the Dirac Hamil-
tonian in the momentum representation; vp ·�
=W�p

† vp	zW�p
�note that W�=2�=−W�=0�. The index 


=K ,K� labels the valleys. As Hamiltonian �3� does not con-
tain 
 matrices, the valley subspace is degenerate so any
other basis can be chosen.

Besides plane waves, we will need the wave functions of
states with a definite half-integer value of the “total angular
momentum” jz=−i�� /���+ �1 /2�	z, which also commutes
with the Dirac Hamiltonian �3�,

�pjzs

�0� �r� =

1

2
�sJjz−1/2�pr�ei�jz−1/2���+�/2�

Jjz+1/2�pr�ei�jz+1/2���+�/2� � � �
, �5�

where Jm are Bessel functions of the first kind. If one relaxes
the condition of regularity of the wave function at r=0, the
Bessel functions of the first kind Jm can be replaced with the
Bessel functions of the second kind Ym or with Hankel func-
tions Hm

�1,2�=Jm� iYm.

III. RESONANT SCATTERING ON A SHORT-RANGE
POTENTIAL

A. General definitions

Here we use the standard expansion in partial waves30

modified for the Dirac equation analogous to Refs. 31–33.
For a potential V�r� that falls off rapidly at distances r�R,
the electron motion at distances r�R can be considered free.
The general scattering solution corresponding to the energy
�=svp can be written as

�ps
�r� = �
m=−�

�
e−i�m+1/2��p


2
� sJm�pr�eim��+�/2�

Jm+1�pr�ei�m+1���+�/2� � � �


+ �
m=−�

�
1

2
� sHm

�1��pr�eim��+�/2�

Hm+1
�1� �pr�ei�m+1���+�/2� �

�
1

2
Fm+1/2

s �p��
. �6�

The first sum simply represents the incident plane wave �Eq.
�4��. The second sum in Eq. �6� represents the outgoing scat-
tered wave. Since a short-range potential can change arbi-
trarily the structure of the state in the valley subspace, an

arbitrary 2�2 matrix Fm+1/2
s �p� is introduced �the factor 1/2

in front of F is introduced for convenience�.37 The 2�2
matrix F can be represented as a linear combination of 

matrices.

Using the asymptotic behavior of Hm
�1��pr� at pr� �m2

−1 /4� for integer m,

Hm
�1��pr� �

pr→�

2/�

pr
eipr−im�/2−i�/4, �7�

and the standard definitions of the scattering amplitude
fs�� ,�p ; p� and the scattering matrix Ss�� ,�� ; p� in
two-dimensions,38 where the existence of the degenerate val-
ley subspace is taken into account,

�ps
�r� �
r→�

eipr��ps

�0� +

eipr+i�/4


r
fs��r,�p;p���rs


�0� , �8a�

�ps
�r� �
r→�

e−ipr+i�/4


2�pr
2����r − �p − ����ps


�0�

+
eipr−i�/4


2�pr
Ss��r,�p;p���rs


�0� , �8b�

we relate them to the matrix Fm+1/2
s �p�. Calculating the prob-

ability current j�r�=�†�r�v	��r�, we obtain the differential
cross section d�s

��� ,�� ; p� for an incident particle with
momentum p= �p cos �� , p sin ��� in the valley 
� to be
scattered into the valley 
 in the direction n= �cos � , sin ��;

fs��,��;p� =
Fs��,��;p�

i
2�p
, �9a�

Ss��,��;p� = 12�22���� − ��� + Fs��,��;p� , �9b�

Fs��,�p;p� 
 �
m=−�

�

Fm+1/2
s �p�ei�m+1/2��, �9c�

d�s

���,��;p�

d�
= ��


† fs��,��;p��
��
2. �9d�

Note that ��+2�,s

�0� =−��s


�0� ; the above definitions imply 0
��r−�p�2�. For −2���r−�p�0 we have to set
Ss�� ,�� ; p�=−Ss��+2� ,�� ; p�. The scattering matrix satis-
fies the unitarity and reciprocity conditions �the latter assum-
ing the symmetry of the scattering potential with respect to
the time reversal�;

�
0

2� d�

2�
Ss

†��,�1;p�Ss��,�2;p� = 12�22����1 − �2� ,

�10a�

Ss��,��;p� = 
ySs
T��� + �,� + �;p�
y , �10b�

where ST denotes the transpose of the matrix S. The scatter-
ing amplitude can be related to the T matrix T�p ,p� ;�� on
the mass shell, �p�= �p��= ��� /v. Starting from the exact ex-
pression for the scattered wave function,
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�ps
�r� = eipr��ps

�0�

+� d2p�

�2��2eip�rG�p�,svp�T�p�,p;svp���ps

�0� ,

�11a�

G�p,�� 

�1 + vp · 	

�2 − �vp − i0+�2 , �11b�

and taking its pr�1 asymptotics, we arrive at �n
= �cos � , sin �� and n�= �cos �� , sin ��� are unit vectors�

W�T�pn,pn�;svp�W��
† =

iv
p

1

2
�1 + s 0

0 1 − s
� � sFs��,��;p� .

�12�

B. Scattering lengths

At r�R the potential mixes different terms in Eq. �6�.
The asymptotic behavior of the Bessel and Hankel functions
at pr�
�m�+1 for integer m is given by

Jm�pr� =
�sgn m�m

�m�! � pr

2
��m�

, �13a�

Hm�0
�1� �pr� =

�sgn m�m�m�!
i��m�

� 2

pr
��m�

, �13b�

H0
�1��pr� = 1 +

2i

�
�ln

pr

2
+ �� , �13c�

where �=0.5772. . . is the Euler-Mascheroni constant. At this
stage we make an assumption that all terms constituting the
scattered wave in Eq. �6� should be of the same order at r
�R, provided that their coupling is allowed by the symmetry
of the scattering potential. Depending on the symmetry of
the scattering potential, we have to consider two cases: �i�
The potential is isotropic and 	z conserving: V�r�=V�r� and
	zV�r�	z=V�r� �this case was analyzed in Refs. 31–33�.
Then jz=−i�� /���+ �1 /2�	z is conserved so the terms in Eq.
�6� with different values of m are decoupled �each term with
a given m corresponds to jz=m+1 /2�. Matching the terms
gives F jz

��pR�2�jz�; �ii� The potential V�r� is generic so it
mixes all states with different values of jz. Matching the
terms gives F jz

��pR��jz�+1/2. Thus, F�1/2 are the most impor-
tant terms in both cases. Moreover, as typically R�a, con-
sidering the terms with �jz��1 /2 would require going be-
yond the Dirac Hamiltonian since the Dirac Hamiltonian
itself is the leading term in the expansion in pa.

At r�1 / p we can neglect the energy in the Dirac equa-
tion, which becomes

�− iv� · � + V�r����r� = 0. �14�

At r�R this equation admits solutions of the form

rmeim��1

0
� � �
, r−meim��0

1
� � �
, �15�

which determine the asymptotics of different angular har-

monics of the four linearly independent zero-energy solu-
tions. Since nonzero angular harmonics of the incident wave
in Eq. �6� vanish at p→0, we are interested in the solutions
of Eq. �14� whose asymptotics can be written as

�01v�r� �
r→�

�1

0
� � �
 +

ei�

ir
�0

1
� � L11�
 +

e−i�

ir
�1

0
� � L21�


+ �
m�1

O� e�im�

rm � , �16a�

�02v�r� �
r→�

�0

1
� � �
 +

ei�

ir
�0

1
� � L12�
 +

e−i�

ir
�1

0
� � L22�


+ �
m�1

O� e�im�

rm � , �16b�

where each Lij is a 2�2 matrix in the valley subspace,
which has to be determined from the solution of the
Schrödinger equation at short distances �the factor 1 / i is in-
troduced for convenience�. Let us associate the indices i , j
=1,2 of the 2�2 matrices Lij with the matrix structure in the
	 subspace, thus combining the four 2�2 matrices Lij into a
single 4�4 matrix L. Then the asymptotic behavior of any
solution of Eq. �14� at r→� can be written as

��r� = ��0� +
1

ir
�n · ��L��0� + �

m�1
O� e�im�

rm � , �17�

where ��0� is an arbitrary four column. This equation could
also be viewed as the boundary condition on the angular
harmonics of the scattering solution �6� at r→0; being
formed at short distances r�R, this boundary condition
should not depend on � for ����v /R. However, due to the
logarithmic divergence of Hankel function H0

�1��pr�, match-
ing of wave functions should be performed at some r=r0
�R. Note that in contrast to the two-dimensional
Schrödinger equation, the value of the constant r0 cannot be
determined from the zero-energy solution since the logarith-
mic function is not a solution of the Dirac equation at zero
energy.

Comparing expressions �16a� and �16b� to the scattering
solution �6� and using asymptotic expressions �13a�–�13c�,
we obtain the general possible form of F�1/2

s �p�;

i

�p
F+1/2

s �p� = sL11�e−i�p/2 +
1

2
H0

�1��pr0�F+1/2
s �p��

+ L12�ei�p/2 +
1

2
H0

�1��pr0�F−1/2
s �p�� ,

�18a�

i

�p
F−1/2

s �p� = L21�e−i�p/2 +
1

2
H0

�1��pr0�F+1/2
s �p��

+ sL22�ei�p/2 +
1

2
H0

�1��pr0�F−1/2
s �p�� .

�18b�

Solving these equations and comparing the result to Eq. �12�,
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we obtain the general low-energy T matrix,39

T��� = �1 +
�

v
�ln

2v
r0���

− � +
i�

2
�L�−1

2�vL , �19�

which determines the differential cross section,

d�s

���,��;p�

d�
=

p

2�v2 ����s

�0� �†T�svp����s
�

�0� �2. �20�

The matrix L satisfies �i� L=L† to ensure the unitarity of the
scattering matrix �Eq. �10�� and �ii� L=UtL

TUt
† as a conse-

quence of the reciprocity condition �Eq. �10��. Thus, it has
four orthogonal eigenvectors �i: L�i= li�i, where i=1, . . . ,4,
and the four eigenvalues li play the role of the scattering
lengths. The angular dependence of d�s

��� ,�� ; p� /d� is
given by the sum of an isotropic term and terms �e�i� ,e�i��

and e�i��i�� �with all four combinations of the signs�. The
total outscattering cross section �i.e., integrated over � and
summed over v� takes the simple form

�s
�
out ���;p� = �

i=1

4 2�2p��i
†���s
�

�0� �2

�li
−1 − sp ln�e�pr0/2��2 + ��p/2�2 . �21�

Typically, one assumes that for a strong potential all scat-
tering lengths li�R. However, an explicit calculation for a
point defect in the tight-binding model, performed in Sec.
VI, shows that one of the lengths li �let it be l1 for definite-
ness� can become arbitrarily large. The case l1→� corre-
sponds to the existence of a localized solution ��r�
��n ·	��1 /r at zero energy.11 In this case the cross section
diverges at p→0. This divergence corresponds to a similar
divergence in the imaginary part of the electron self-energy
found in Refs. 13 and 28; a similar divergence in the cross
section was found in Ref. 27. Note that even in the case of
resonant scattering the scaling F jz

��pR��jz�F�1/2 holds: in-
deed, at l1→� the coefficients at the 1 /rm terms in the wave
function of the localized state should scale as Rm, as there is
no other length scale in the problem.

IV. IMPURITIES WITH SPECIAL SYMMETRIES

Let us consider two particular kinds of impurities, as
shown in Fig. 1. �i� A sitelike impurity with the symmetry
C3v whose fixed point is located on one of the atoms �let us
assume it to be an A atom�. Thus, the matrix L should be
invariant under the reflection �a and the rotation C3�=C3ta1
�we remind that the rotation C3 is around the center of the
hexagon�. The conditions L=U�a

† LU�a
and L=UC3�

† LUC3�
to-

gether with the time-reversal symmetry restrict the matrix L
to

L = LA1
1 + LB2


z	z + L̃E�
x	x − 
y	y� . �22�

The eigenvalues and eigenvectors of this family of matrices
are

l1,2 = LA1
+ LB2

� 2L̃E, l3,4 = LA1
− LB2

, �23a�

�1,2 =
1

2�

1

0

0

�1
�, �3,4 =

1

2�

0

1

�1

0
� . �23b�

The T matrix has the same transformation properties as the
matrix L so it can be written in the same form �Eq. �22�� with
the substitution L→T. Then, according to Eq. �20� the dif-
ferential intravalley and intervalley cross sections can be
written as

d�KK

d�
=

p

2�v2�TA1
cos

� − ��

2
+ iTB2

sin
� − ��

2
�2

,

�24a�

d�K�K

d�
=

p

2�v2 �T̃E�2. �24b�

�ii� A bondlike impurity with the symmetry C2v whose fixed
point is located at the center of a bond �let us assume it to be
a bond connecting the two atoms within the same unit cell�.
Then, the matrix L should be invariant under the reflection
�a� and the rotation C2�=C2ta1

ta2
, which fixes

L = LA1
1 + LE2


z	x + L̃A1

x	z + L̃E2


y	y , �25a�

l1,2 = �LA1
+ L̃E2

� � �LE2
+ L̃A1

� , �25b�

l3,4 = �LA1
− L̃E2

� � �LE2
− L̃A1

� , �25c�

�1,2 =
1

2�
�1

1

1

�1
�, �3,4 =

1

2�
1

�1

�1

1
� . �25d�

The differential intravalley and intervalley cross sections are

d�KK

d�
=

p

2�v2�TA1
cos

� − ��

2
+ sTE2

cos
� + ��

2
�2

,

�26a�

d�K�K

d�
=

p

2�v2�T̃A1
sin

� − ��

2
+ sT̃E2

sin
� + ��

2
�2

.

�26b�

If the location of the impurity is different from what we
have assumed, its L matrix can be obtained by applying the
corresponding symmetry operation. For example, in case �i�
the matrix for an impurity located on a B atom is obtained by
a C2 rotation: L→
x	zL
x	z. Obviously, these two loca-
tions can occur with equal probability so one could average
over them. This procedure is described in the next section.

V. AVERAGING OVER THE IMPURITIES

As discussed in the end of the preceding section, the pres-
ence of defects characterized by a certain T matrix T�p ,p� ,��
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implies the presence of the same �on average� number of
defects of the same type placed in different locations with
different orientations and thus having different T matrices
but equivalent with respect to the symmetry of the crystal. If
one studies effects that do not involve coherent scattering on
several impurities, it is sufficient to average any observable
O�T�p ,p� ,��� calculated for a single impurity according to

Ō =
1

3�C6v� �
R�C6v

�O�URT�Rp,Rp�,��UR
†�

+ O�Uta1
URT�Rp,Rp�,��UR

†Uta1

† �

+ O�Uta1

† URT�Rp,Rp�,��UR
†Uta1

�� . �27�

Here �C6v�=12 is the number of elements in the C6v group, R
are the operations from the group, and UR are their 4�4
matrices in the � representation. The averaging is performed
also over the elementary translations with the matrices Uta1

=e−�2�i/3�
z and Uta2
=Uta1

† . It is convenient to consider group

C6v� —the direct product of the point group C6v and the three-
cyclic group represented by the matrices 1 ,e��2�i/3�
z. Then
Eq. �27� describes simply the average over the group C6v� .

Let us apply this procedure to the differential cross sec-
tion. We write the averaged Eq. �20� as

d�

d�
=

p

2�v2 �
R�C6v�

Tr�UR
†�����†�URT†UR

†���†�URT�
�C6v� �

,

�28�

where we abbreviated �=��s

�0� , ��=���s
�

�0� , and T=T�svp�.
Thus, equivalently, we can calculate the average
�����†� � ���†�. In the matrices ��† and ����† we separate
the components corresponding to different irreducible repre-
sentations of C6v;

��† =
1

4 �
i,j=0,x,y,z

��†
i	 j��
i	 j =
1

4
�1 � 
z��1 + sn · �� ,

�29�

where the plus �minus� sign should be taken for �
=�K
��
=�K�� and n= �cos � , sin ��. Let us label the matrices

i	 j belonging to an irreducible representation r of the di-
mensionality dr as �
	��

r , where the index �=1, . . . ,dr labels
the matrices within the representation. Then in each repre-
sentation we can define the dr�dr matrices �UR

r ���� as

UR
†�
	��

rUR = �
��=1

dr

�UR
r �����
	���

r . �30�

From the orthogonality relation for the representation
matrices,40

1

�C6v� �
R�C6v

�UR
r ��1�2

� �UR
r���3�4

=
�rr�

dr
��1�3

��2�4
, �31�

we obtain the general expression,

d�s

���,��;p�

d�
=

p

32�v2�Tr�
0T†�svp�
0T�svp��

+
1

2
cos�� − ���

� �
j=x,y

Tr�
0	 jT
†�svp�
0	 jT�svp���

+ �2�

� − 1��
0 → 
z� . �32�

�Here we denoted the 4�4 unit matrix 1 by 
0.�
To conclude this section, we note that the averaging pro-

cedure described above is equivalent to averaging the cross-
section d��� ,��� /d� over ��+��� /2 keeping �−�� fixed
�due to the symmetry of the crystal with respect to C3 rota-
tions� and subsequently averaging over the sign of �−��
�due to the symmetry with respect to reflections�.

VI. IMPURITIES IN THE TIGHT-BINDING MODEL

A. Green’s function

Let us consider the tight-binding model with nearest-
neighbor coupling as an exactly solvable example of a mi-
croscopic model �i.e., well defined at short distances�. The
only parameter of the clean Hamiltonian is the nearest-
neighbor matrix element, which we write as −2v / �3a�, thus
expressing it in terms of the electron velocity at the Dirac
point. It is convenient to work with a two-component wave
function ��A�rn� , �B�rn�� �corresponding to the two atoms
in the unit cell� where the position of the unit cell rn=n1a1
+n2a2 is labeled by two integers n1 ,n2. The tight-binding
Hamiltonian H0�rn−rn�� is a 2�2 matrix in the sublattice
space.

The scattering problem in the tight-binding model with a
few site potential U is conveniently solved using Lippmann-
Schwinger equation,

� = ��0� + G���U� , �33�

where ��0� is the incident wave, � is the sought wave func-
tion, and G���= ��−H0�−1 is the Green’s function, explicitly
given by

G�rn − rn�,�� =� d2k

ABZ

eik�rn−rn��

�2 − �tk�2
� � − tk

− tk
� �

� , �34�

where tk= 2v / 3a �1+e−ika1 +e−ika2� and ABZ
 �2��2 / Auc
= �2��2 / �
27a2 /2� .

The large distance behavior of G�r ,�� is determined by
the singularities of the denominator, i.e., vicinities of the
Dirac points �K, k= �K+p, where we can approximate

1 + e−i��K+p�a1 + e−i��K+p�a2 	
3a

2
��px + ipy� . �35�

Focusing at ����v /a, we obtain for r�a �c .c. stands for the
complex conjugate�,

GAA�r,�� =
Auc���
4iv2 �eiKr + e−iKr�sH0

�1�����r/v� , �36a�
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GBA�r,�� =
Auc���
4iv2 �eiKr+i�+i�/2 + c.c.�H1

�1�����r/v� ,

�36b�

GBA�r,0� =
Auc

v

eiKr+i� − e−iKr−i�

2�ir
. �36c�

We also need the Green’s function at coinciding points;

GAA�0,�� = −
Auc�

�v2 �ln
2v

���r0
− � +

i�

2
� + O��3� , �37a�

GBA�0,�� =
a

2v
+ O��2� . �37b�

The value of r0 in Eq. �37� is determined by the integration
over the whole first Brillouin zone; numerical integration
gives e�r0=a within the numerical precision. The leading
term in Eq. �37� can be easily obtained in the coordinate
representation using the fact that H0

−1, just like H0, is invari-
ant under C3 rotations around each carbon atom.

B. One-site impurity

Let us add the on-site potential U0 different from zero
only on the A atom of the n1=n2=0 unit cell. The limit U0
→� is equivalent to the imposition of the boundary condi-
tion �A�0�=0 and thus describes a vacancy.

First of all, we note that the two plane-wave states with
�A�rn�=0 and �B�rn�=e�iKrn remain zero-energy eigen-
states of the Hamiltonian even in the presence of the poten-
tial. In representation �1� these two states are represented by
the four columns,

�
0

1

0

0
� = �0

1
� � �K, �

0

0

1

0
� = �1

0
� � �K�.

Comparing them to the asymptotic forms �Eqs. �16a� and
�16b��, we see that L11�K�=L21�K�=0 and L12�K=L22�K
=0.

The other two zero-energy solutions correspond to the
incident wave on the A sublattice, �A

�0��rn�=e�iKrn and
�B

�0��rn�=0. In representation �1� these two states are repre-
sented by the four columns,

�
1

0

0

0
� = �1

0
� � �K, �

0

0

0

− 1
� = � 0

− 1
� � �K�.

As the potential U0 is localized on one atom and G��=0� is
off-diagonal in the sublattices, the Lippmann-Schwinger
equation is straightforwardly solved to give the wave func-
tion

�A�rn� = e�iKrn, �B�rn� = U0GBA�rn,� = 0� . �38�

Using Eq. �36�, we obtain

L =
AucU0

�v

1 + 
z	z + 
y	y − 
x	x

4
, �39�

in agreement with Eq. �22�. The eigenvalues of this matrix
are easily found to be l1=AucU0 / ��v� and l2= l3= l4=0. At
U0→� the scattering length l1 diverges. In this case the am-
plitude of the incident wave can be set to zero, and �B�rn�
�GBA�r ,�=0� is the wave function of the state localized on
the vacancy.

At ��0 the Lippmann-Schwinger equation is solved self-
consistently for �A�0� to give the wave functions,

�ks�rn� = � ei�k/2

− se−i�k/2� eikrn


2
+

ei�k/2/
2

U0
−1 − GAA�0,��

�GAA�rn,��

GBA�rn,�� � ,

�40�

where ei�k = tk / �tk�. This corresponds to the T matrix,

T��� =
Auc

U0
−1 − GAA�0,��

1 + 
z	z + 
y	y − 
x	x

2
. �41�

Using Eq. �37�, we arrive at Eq. �19�.
To calculate the average cross section, we note that in Eq.

�32� only the first term survives; so the scattering is isotropic
in space and completely mixes the valleys. The total outscat-
tering cross section and the transport cross section averaged
over the impurity positions coincide and are given by

�out��� =
�2v���/2

� �v2

U0Auc
+ � ln

2v
e�r0����

2

+ ���

2
�2 . �42�

This cross section is plotted in Fig. 2 as a function of � for
several values of U0=1, 5, and 10 eV.

C. Two-site impurity

Let us add a potential that mixes the two sites in the n1
=n2=0 unit cell;

U = �U0 U1

U1 U0
� . �43�

We have chosen U1 to be real in order to preserve the A↔B
symmetry. The self-consistent solution of the Lippmann-
Schwinger equation gives

U��0� = �U−1 − G�0,���−1��0��0� 
 T�����0��0� . �44�

Comparing the resulting wave function with Eq. �17�, we
obtain

L =
Auc

2�v
�T�0�

1 + 
z

2
+ 	yT�0�	y

1 − 
z

2
− iT�0�	y


x + i
y

2

+ i	yT�0�

x − i
y

2
� . �45�

For the potential of form �43� the scattering lengths are
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obtained as �the matrix form of L is in agreement with Eq.
�25��

T�0� =
�U0

2 − U1
2�U0

U0
2 + �U1 + �a/2v��U0

2 − U1
2��21

+
�U0

2 − U1
2��U1 + �a/2v��U0

2 − U1
2��

U0
2 − �U1 + �a/2v��U0

2 − U1
2��2 	x 
 T01 + Tx	x,

�46a�

L =
AucT0

2�v
�1 + 
y	y� +

AucTx

2�v
�
z	x + 
x	z� , �46b�

l1,2 =
Auc

�v

U0 � U1

1 − �a/2v��U1 � U0�
, l3,4 = 0. �46c�

The scattering lengths diverge when U1=2v /a�U0, in
agreement with the results in Ref. 15.

Calculation of the T matrix from Eq. �19� and its substi-
tution into Eq. �32� gives the differential intravalley and in-
tervalley cross section �we set ��=0 as it depends only on
�−���,

d�

�

d�
=

�v���
8

��t1�2 + �t2�2 �
�t1 � t2�2

2
cos �� , �47a�

t1,2��� =
1

v/l1,2 + � ln�2v/�e�r0����� + i��/2
. �47b�

In Eq. �47� the upper and lower sign is taken for the intra-
valley �
=
�� and intervalley �
�
�� scattering, respec-
tively. The total outscattering cross section is plotted in Fig.
3 for the two cases of U0=5 eV and U1=0, and U0=0 and
U1=5 eV.

VII. CONCLUSIONS

In this paper we have studied scattering of low-energy
electrons on a single neutral short-range impurity in
graphene within the framework of the 2D Dirac equation
taking into account valley degeneracy. We have shown that
for a general short-range scatterer the most important infor-
mation needed to determine the cross section is encoded in a
4�4 matrix L whose eigenvalues are the scattering lengths.
Divergence of one or several scattering lengths occurs when-
ever the impurity has bound electronic states exactly at zero
energy, which is accompanied by the singular behavior of the
scattering cross section as a function of the electronic energy.
Quasibound states manifest themselves as resonances at fi-
nite energies, their width determined by the energy itself.

The matrix L can be obtained from the solution of a mi-
croscopic model for the impurity in graphene; for this, one
needs to consider the zero-energy state only. As an example
of a microscopic model, we take the tight-binding model and
calculate the scattering lengths for the diagonal one-site im-
purity potential and the two-site potential having both diag-
onal and off-diagonal components. We obtain that one of the
scattering lengths indeed becomes much larger than the in-

teratomic spacing for generic strong impurities �i.e., when
impurity strength is of the order of the electronic bandwidth�.
This results in �i� a dramatic increase in the scattering cross
section and �ii� its strong energy dependence.
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APPENDIX: DIFFERENT REPRESENTATIONS OF THE
STATE VECTOR

If one adopts a representation different from Eq. �1� �let

us denote the corresponding four columns by �̃�, the matri-
ces 	i, and 
 j, where i, j=x ,y ,z, instead of being simple
Pauli matrices, become some 4�4 matrices. Their algebraic
relations and symmetry properties listed in Table II remain
the same. In fact, the convenient way to define these matrices
for an arbitrary representation is to specify the irreducible
representation of the C6v group �the point group of graphene�
according to which they transform. This is sufficient to fix
their algebraic relations.34 For example, the isospin matrices
	x and 	y are defined as the matrices diagonal in the K ,K�
subspace and transform according to E1 representation of
C6v.

As we have defined mutually commuting matrices 	i and

 j, and have written the free-electron Hamiltonian in terms
of the 	 matrices only, we must separate the degenerate val-
ley subspace defined as that invariant under the action of the
	 matrices. Since the basis vectors of representation �1� al-
ready have the necessary structure of the direct product, this
representation is preferred in dealing with scattering prob-
lems. One can pass to it by choosing four basis vectors

�̃1 , . . . , �̃4 defined as eigenvectors of 	z and 
z,

	z�̃1 = 
z�̃1 = �̃1,

− 	z�̃2 = 
z�̃2 = �̃2,

	z�̃3 = − 
z�̃3 = �̃3,

− 	z�̃4 = − 
z�̃4 = �̃4. �A1�

Their relative phases are fixed by the requirement that the

matrices 	i act as the Pauli matrices in the subspaces ��̃1 , �̃2�
and ��̃3 , �̃4�, and 
i act as the Pauli matrices in the sub-

spaces ��̃1 , �̃3� and ��̃2 , �̃4�. Thus, vectors �1 , . . . ,�4 can be
identified with the basis columns �1000�T, �0100�T, �0010�T,
and �0001�T in representation �1� up to an overall phase. The

two representations are related by a unitary matrix U: �̃
=U�.

The overall phase of the matrix U is fixed by requiring the

proper form of the time-reversal matrix. In the �̃ representa-

tion the unitary time-reversal matrix Ũt can be different from
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	y
y. Indeed, the matrices in the two representations are

related by Ũt=UUtU
T �while 	i and 
 j are transformed by

applying U and U†�, which is sensitive to the overall phase

of U. However, the properties Ũt
�Ũt=1, Ũt	i

�Ũt
†=−	i, and

Ũt
i
�Ũt

†=−
i, do not depend on the representation. Applying
these relations in the newly constructed representation, we
obtain Ut=	y
y up to a phase; this phase is nullified by the
appropriate choice of the phase of U.
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